

A Computer Program (VEHSIM) for Vehicle Fuel Economy and Performance Simulation (Automobiles and Light Trucks)

Volume IV: Enhancements

Russell W. Zub

Transportation Systems Center Cambridge MA 02142

October 1981 Final Report

This document is available to the public through the National Technical Information Service, Springfield, Virginia 22161.

U.S. Department of Transportation National Highway Traffic Safety Administration

Office of Research and Development Washington DC 20590

NOTICE

STHELDS I-TOB

E

R

N C W

This document is disseminated under the sponsorship of the Department of Transportation in the interest of information exchange. The United States Government assumes no liability for its contents or use thereof.

NOTICE

The United States Government does not endorse proucts or manufacturers. Trade or manufacturer's names appear herein solely because they are considered essential to the object of this report.

NOTICE

The views and conclusions contained in this document are those of the authors and should not be interpreted as necessarily representing the official policy or opinions, either expressed or implied, of the U.S. Government.

Technical Report Documentation Page

U . 4 . 4			Totaline insperie	
1. Report No.	2. Government Accession	No.	3. Recipient's Catalog I	No.
DOT-HS-806-040				
4. Title and Subtitle			5. Report Date	
A COMPUTER PROGRAM (VEH	SIM) FOR VEHI	CLE FUEL	October 19	981
ECONOMY AND PERFORMANCE	SIMULATION		6. Performing Organizati	
(AUTOMOBILES AND LIGHT	TRUCKS)		DTS - 323	
Volume IV: Enhancements			8. Performing Organizati	on Report No.
7. Author(s)			DOT-TSC-NHTS	rypactoria per
Russell W. Zub			DOI 100 1111101	. 01 23.17
9. Performing Organization Name and Address U.S. Department of Tran			10. Work Doit No. (TRAI	
U.S. Department of Iran	sportation	atmatian	HS273/R2410	
Research and Special Pr Transportation Systems		stration	11. Contract or Grant No).
Cambridge MA 02142	Center			
			13. Type of Report and F	Period Covered
12. Sponsoring Agency Name and Address			Final Repo	rt
U.S. Department of Tran			Jan 1980	-Aug 1981
National Highway Traffic		istration	14,-Sponspring Agency C	ode
Office of Research and I	Development	1	Transfer Service	
Washington DC 20590 15. Supplementary Notes		TRANSPORT	ONRD-13	
13. Supplementary No.es		THANGERAIT	25.17.014	
		MAY 2.8	1982	
			1302.	
16. Abstract		1.555.5		
m1 ·	1	LIBRAK		10 cinu10 *
This report presen	ts an updated	descripti	on of a venic	ie simura-
tion program, VEHSIM, w	hich can deter	rmine the	fuel economy	and per-
formance of a specified	vehicle over	a defined	route as it	executes a
given driving schedule.	Vehicle inp	ut accommo	dated by VEHS	IM include
accessories, engine, re	ar axle, conv	erter tran	smission, tir	es, aero-
dynamic drag coefficien	t, and shift	logic. Th	e report i s c	omprised of
four volumes. Volume I	presents a de	escription	of the numer	ical ap-
proach and equations, V	olume II is a	user's ma	nual, Volume	III
contains the program li	stings, and V	olume IV d	lescribes a si	.mula-
tion of the Integrated	Overdrive Tra	nsmission	with a split-	torque
converter.	41		-	-
			€9	
€				
		545		
6 2				
17. Key Words	18.	Distribution States		
Motor Vehicle, Simulati	on, Fuel	DOCUMENT	TIS AVAILABLE TO THE THE NATIONAL TECHNI	PUBLIC
Economy, Performance,		INFORMAT	ION SERVICE, SPRINGF	IELD,
Engine Map		VIRGINIA 2	22161	
- •	}			
19. Security Classif, (of this report)	20. Security Classif. (
The second closes of the second			21. No. of Pages	22. Price
Unclassified	Unclassi		50	22. Price

	•	7.

PREFACE

Volume IV is a supplement to a three volume document, "A Computer Program (VEHSIM) for Vehicle Fuel Economy and Performance Simulation (Automobiles and Light Trucks," developed at the Transportation Systems Center. This volume considers implementation of a simulated split torque transmission into VEHSIM.

The Energy Technology Branch expresses thanks to Mr. Joseph Burshtein of SDC Integrated Services, Inc. for his invaluable help in writing the split torque algorithm; and to Mr. Jack Dolan of SDC Integrated Services, Inc., for assistance in implementing the source code into VEHSIM.

METRIC CONVERSION FACTORS

	Sy the!			1 1	æ '	11			•	' s'	ኒ	Ī					3 :	•			;	; = 1	. 6	1	Ē	È									1
e Measures	Te Find		; 1	inches	¥.	yards miles				Squere inches	square yards	Squere miles					Beaucos	poradi the line			:	Huld curces	greats		cubic feet	Codec yands				Fahranhait	a prince and and	30	25 200	}	
rsions from Metric	Maltiply by	LENGTH		.if		. •		AREA		9 .10	~ ;		•		MASS (weight)		0.036	7:7	•	VOLUME		6.03 2.1	1.04	97.0	36	2		TEMPERATURE lexactly		9.75 (then	(2C Box		996	-	37.5
Approximate Conversions from Matric Measures	When You Know			Cantimaters	Beleta	molecs hilameters				Square continuators	squere melers	hacteres (10 000 m ²)					press.	hilograms	iffe poor! sewast			millilitara	1100	liters	cubic melens	CUDIC SINGER		TEMP		Calsius	namber sture			+	0 02- 04-
	Symbol S		1	•	E I	. 5			•	ኒ ~	e ".	5 ;	!				•	1	-			Ē -	-	_	E "	Ē				ů				ĭ	
i	22 1		oz	61			21) 		t 	•	, t	1	1	21		11			•	•		Z		3		5		'	\$.!.	3	I I	l I
	1,11			"["	1*	'l' 7	'l'	<u>,</u>	"	٠ <u>۱</u> ٬	' ¹	' '	l']'	"!"	5	<u> </u>	' ' 	1,1	' ' '	' '' '	' '	ļ'ļ ^ņ	1	T'	"	ן ין	ļ'Ĥ	1	ľ	' '	' 'i	ηi	rj'i	'[']'	ili hes
	Symbol				E	5 (. 5			Ą	~	~ <u>r</u>	~	2			•	.5	-			ĒĪ	Ē		-	-	_^	E	E		۰	ı		1	
Messures	To find				Contimeters	Cantimeters	kilometera			Actibée Confirmations	Bquare meters	ednese meter s	Square fulgmeters	hectares			Street St	Arlograms	formes			millillers 	milliliters.	litera	liters.	Mers	Litera	Cubic melers			Celsius	temperature		abbris, see NRS Miss. Public 286,	
Approximate Conversions to Metric Measures	Multiply by		LENGTH		.2.5	90	1.6	ABEA		6.5	6.0	9.0	2.6	₹.	MASS (weight)		82	97.0	6.0	VOLUME		e y	2 2	0.24	0.47	96.0	3.6	0.03		TEMPERATURE (exact)	5/9 (after	Bubiracting	32)	if fordente free er beide bereit.	2 (atalia) va (1110 286
Approximate Conv	When You Know				ınches	- Poet	miles			source inches	equere feet	epued avenbe	square miles	Bezon	2		OUNCOS	\$ punod	short tons (2000 Ib)			feaspoons	fluid cuncas	eups	pints	20420	gellons	april 1990		TEMP	Fahrenheit	lemperature		Time 1. 2.54 (creatily), for other exert convertions and many defauled failurs, see MRs	and merchans, Price 17 (5, 5)
	Symbol				5 .	e ?	Ē			~5	~=	" Ž.	Ĩ				3	2				4 L	20 0	v	Z.	-	- C		ļ					11 of 1 2 54 term	4

TABLE OF CONTENTS

Section		Page
1.	INTRODUCTION	1-1
2.	TRANSMISSION DESCRIPTION	2-1
3.	PROBLEM FORMULATION	3-1
4.	SPLIT TORQUE CONVERTER ANALYSIS	4-1
	4.1 Speed Equation	4 - 3 4 - 6
5	ALGORITHMS OF A SPLIT TORQUE CONVERTER	5-1
	5.1 Driving Mode	5 - 3 5 - 3
6.	TRANSMISSION ALGORITHMS IMPLEMENTATION INTO VEHISM	
7.	DATA SHEET FOR TRANSMISSION SIMULATION	7-1
APPENDIX	A - SHIFT LOGIC LINES DEFINED IN DEGREES OF THROTTLE	A-1
APPENDIX	B - SOURCE CODE LINES	B-1

LIST OF ILLUSTRATIONS

Figure		Page
1,	KINEMATIC SCHEME OF A SPLIT TORQUE MECHANISM	1-2
2	KINEMATIC SCHEME OF THE SPLIT TORQUE PLANETARY MECHANISM	4-2
3	FORCE DIAGRAM OF PLANETARY GEAR MECHANISM	4 - 4
4	FLOW CHART OF THE OVERDRIVE TRANSMISSION SUBROUTINE IMPLEMENTATION INTO VEHSIM	6-2
5	STRUCTURE OF NEW SUBROUTINE "OVERDRIVE TRANSMISSION"	6 - 2
6	FLOW CHART FOR DRIVE, COAST AND IDLE MODES	6-3
7	DETAILED FLOW CHART OF THE SPLIT TORQUE SEGMENT OF THE OVERDRIVE TRANSMISSION SUBROUTINE	6 - 4
8	DATA SHEET: AUTOMATIC OVERDRIVE TRANSMISSION	7 - 2
	*	
	LIST OF TABLES	
<u>Table</u>		Page
1	TRANSMISSION GEAR CHARACTERISTICS	2-1
2	DRIVE AND COAST CONVERTER DATA (CGC117)	5 - 5
3	DRIVE MODE	5 - 6
4	COAST MODE	5 - 7
5	GLOSSARY OF SYMOBLS USED IN FIGURE 7	6-7

1. INTRODUCTION

This report considers the implementation of a simulated Split Torque Overdrive Transmission into the Transportation Systems Center computer program, VEHSIM, for automobile and light duty truck fuel economy and performance.

The presence of the split torque converter within the over-drive transmission does not allow the use of the existing "CONVTR" subroutine currently in VEHSIM. The purpose of this analysis is to modify the current model to accommodate a split torque overdrive transmission capability.

The split torque transmission covered herein is similar to Ford Motor Company's Automatic Overdrive (AOD), also referred to as the Ford Integral Overdrive (FIOD) transmission. The transmission operates with two paths of power flow: one path uses a hydrodynamic torque converter and the other path utilizes a mechanical drive. The two paths converge into a compound planetary gearset that combines the individual power flows. The transmission has four gears, with the power flow in first and second gear completely hydrodynamic. The fourth gear uses a mechanical path and the third gear uses a split torque path. The majority of the analysis is focused on the third gear power flow since this is unique to the VEHSIM program.

The approach of this report is first to examine the transmission as an object of modeling and then to look at the application of the model to the current version of VEHSIM. A kinematic analysis of the planetary gear mechanism is also presented. Finally, an algorithm for the simulation is given along with the actual software used.

The kinematic scheme of the split torque converter is presented in Figure 1. The necessity to simulate a split torque

	×		
	36		

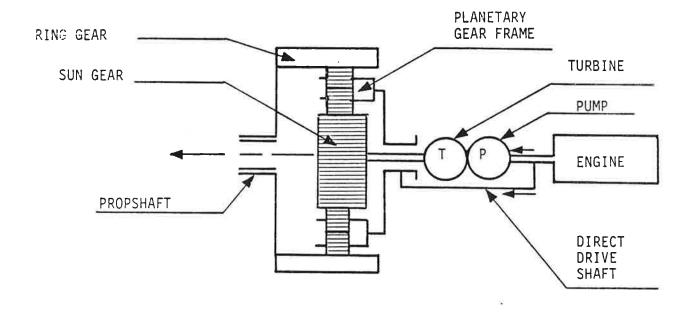


FIGURE 1. KINEMATIC SCHEME OF A SPLIT TORQUE MECHANISM

			igt.
	*		

converter involves two groups of problems. The first group relates to the split torque converter proper and includes a solution of a nonlinear algebraic equation. The second group is associated with the adaptation of the split torque transmission to the VEHSIM program.

	8		
	3		
	×		

2. TRANSMISSION DESCRIPTION

The split torque transmission as an object of simulation has three modes of operation:

- o A standard combination of a gear box and a torque converter (at the first and second gear)
- o A parallel combination of a direct driveshaft and a torque converter linked to a propshaft via a planetary mechanism (at the third gear)
- o A direct mechanical overdrive (at the fourth gear).

 A summary of transmission characteristics is presented in Table

 1.

TABLE 1. TRANSMISSION GEAR CHARACTERISTICS

Gear	Gear load efficiency*	Gear = ratio	Converter characteristics
I	a ₁ = .98	2.4	Standard (as currently exists in VEHSIM)
II	a ₂ = .98	1.467	Same as gear I
III	a ₃ = 1.0**	1.00**	Special, to be derived
IV	a ₄ = .98	0.667	No converter, direct drive

^{*}This parameter is introduced into VEHSIM via "GEAR" data sheet.

^{**}This coefficient is introduced artificially to use the existing data sheet.

3. PROBLEM FORMULATION

The software and data base format for the modeling of the split torque transmission involve the following problems:

- o Speed equation of the split torque converter
- o Torque equation of the split torque converter
- o Torque loss calculation
- o Drive, coast, and idle modes of operation
- o Split torque converter state variables for different modes of operation
- o Implementation into VEHSIM
- o Overdrive transmission data base.

	8	

4. SPLIT TORQUE CONVERTER ANALYSIS

4.1 SPEED EQUATION

The kinematic scheme of a planetary mechanism of the split torque converter is displayed in Figure 2. In this scheme, radii R_1 and R_2 are proportional to the number of teeth of the sun and ring gear, respectively:

$$R_1 \equiv Z_1 \equiv 1$$

$$R_2 \equiv Z_2 \equiv 2.4$$

Designate:

RPM₁, RPM₁, RPM₂ = speed in RPM of the sun, planetary, and ring gear, respectively.

The planetary mechanism works as a summation device, and speeds of its gears satisfy an equation:

$$RPM_2 = k_1' RPM_1' + k_1 RPM_1$$
 (4-1)

If $RPM'_1 = RPM_1$, the planetary mechanism in Figure 2 is "locked," and from (4-1):

$$RPM_2 = RPM_1' = RPM_1$$

Then:

$$1 = k_1' + k_1 \tag{4-2}$$

If $RPM_1 = 0$, from (4-1) obtain:

$$RPM_2 = k_1 RPM_1$$

Gear ratio k_1' from the sun gear to the ring gear (planetary gear frame is fixed) is:



FIGURE 2. KINEMATIC SCHEME OF THE SPLIT TORQUE PLANETARY MECHANISM

$$k_1' = R_1/R_2$$
 (4-3)

Substitute (4-3) into (4-2) and find k_1 :

$$k_1 = (R_2 - R_1)/R_2$$
 (4-4)

Substituting (4-3) and (4-4) into (4-1) and introducing parameters:

$$A_1 = R_1 = 1$$
 $A_2 = R_2 = 2.4$ (4-5)

the desired <u>speed equation of the split torque planetary mechanism</u> is:

$$RPM_{2} = (A_{1}/A_{2})RPM_{1}' + ((A_{2} - A_{1})/A_{2})RPM_{1}$$
 (4-6)

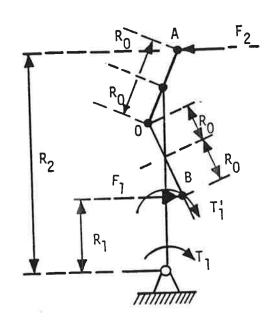
where:

 RPM_2 = speed at the output of the split torque converter

RPM; = speed of the converter's turbine

RPM₁ = speed of the direct driveshaft

 A_1 , A_2 = coefficients proportional to the number of teeth of the sun and ring gears, respectively.


4.2 TORQUE EQUATION

The torque equation can be derived by finding the relation between $T_1^{\,\prime}$ and $T_1^{\,\prime}$:

 T'_1 = torque at the sun gear (converter output)

 T_1 = torque at the planetary gear frame (direct drive shaft).

For this analysis, a force diagram (based on the kinematic scheme) is constructed in which levers are substituted for gears (Figure 3).

 R_1, R_0, R_2 = radii of the sun, planetary, and ring gears, respectively

F₁,F₂ = force of contact between gears: sun/planetary and planetary/ring

T₁ = torque applied to the frame of the planetary gear

 T'_1 = torque applied to the sun gear.

FIGURE 3. FORCE DIAGRAM OF PLANETARY GEAR MECHANISM

	2		
			÷

The system of two planetary gears in Figure 2 is modeled in Figure 3 by a system of levers AO and OB. These levers are in a state of dynamic equilibrium, which means that contact forces (F_1, F_2) acting at points A and B are equal:

$$F_1 = F_2 = F \tag{4-7}$$

For the system in Figure 3 the torque is:

$$T_2 = T_1' + T_1$$

$$T_2 = F_2R_2$$

$$T_1' = F_1 R_1$$
 (4-8)

where:

 T_2 = summation torque applied to the ring gear

 $T_1' = torque applied to the sun gear (converter output)$

From (4-8) have:

$$F_2R_2 = F_1R_1 + T_1$$

In correspondence with (4-7), the above equation is:

$$FR_2 = FR_1 + T_1$$

Hence,

e -

$$T_1 = F(R_2 - R_1)$$
 (4-9)

The desired torque relation follows from (4-8) and (4-9):

$$T_1' : T_1 = R_1 : (R_2 - R_1)$$

Substituting coefficients A_1 And A_2 in place of R_1 and R_2 to get the torque equation of the split torque converter:

$$T'_1 : T_1 = A_1 : (A_2 - A_1)$$
 (4-10)

Where:

 T_1' = torque at the sun gear (converter output),

T₁ = torque at the planetary gear frame (direct drive-shaft)

A₁,A₂ = coefficient proportional to the number of teeth of the sun and ring gear, respectively.

4.3 PROBLEM OF TORQUE LOSSES CALCULATION

Consider a problem of torque losses calculation for the Split torque Transmission.

At the first and second gear, converter/gearbox interactions within the split torque transmission corresponds to the standard scheme modeled by VEHSIM. Accordingly, the scheme of torque loss calculation within VEHSIM is appropriately modeled at the first and second gear.

A unique situation occurs for the third gear, i.e., to the split torque configuration of the transmission. If the torque losses are generated within the planetary mechanism, then the existing VEHSIM scheme for the torque losses calculation is valid. In the opposite case (affirmed by the manufacturer's data), the balance of torque losses within the split torque version of the split torque transmission must be calculated along the specially designed scheme. This will cause changes within the "GOBACK" subroutine of VEHSIM. As for the fourth gear, the converter losses are not calculated.

4.4 MODES OF OPERATION

<u>Drive</u> - In this mode, a direct driveshaft and converter turbine (Figure 1) rotate in the same direction. A load torque is applied to a ring gear, and this causes a slippage in the converter.

Idle - The ring gear is stemmed by a large resistance torque at the wheels. The direct driveshaft rotates the planetary gear frame with the speed of the engine. Accordingly, the outer planetary gear rolls along the inner perimeter of the ring gear. As a result, the inner planetary gear generates the rotation of a sun gear and the converter turbine into the opposite direction.

<u>Coast</u> - This mode takes place when a negative torque is applied by the propshaft. Such a condition may occur when a car rides down a hill or when it moves with the throttle closed. The planetary gear frame is revolved by a direct driveshaft with the speed of the engine, and ring gear speed is higher than the speed of the planetary gear frame. Correspondingly, a sun gear and converter turbine (Figure 1) have a higher speed than the engine speed.

		963
	a a	

ALGORITHMS OF A SPLIT TORQUE CONVERTER

5.1 DRIVING MODE

Given: RPM₂, TORQ2 = speed and torque at the output of the split torque converter find SR and TR (speed and torque ratios) of the split torque con-

where:

verter

 $SR = RPM_2/RPM_1$

 $TR = TORQ_{2}/(TORQ_{1} + TORQ_{1}'/TR)$

RPM, = speed of engine (converter input)

 $TORQ_1$ = torque at direct drive shaft

TORQ' = torque at converter output.

The following equations are used:

$$(A_1/A_2)$$
 RPM'₁ + $((A_2 - A_1)/A_2)$ RPM₁ = RPM₂

$$TORQ_1'/TORQ_1 = A_1/(A_2 - A_1)$$

$$TORQ_1' + TORQ_1 = TORQ_2$$

$$RAT = RPM_{1}^{!} / \sqrt{TORQ_{1}^{!}}$$

$$SR = f_{SR}(RAT)$$

$$RPM_1 = RPM_1'/SR$$

where:

RPM₁, RPM'₁, RPM₂ = speed of engine, converter turbine, and propshaft, respectively.

A₁, A₂ = coefficients proportional to number of teeth of a sun and ring gear

TORQ', TORQ = torque at converter turbine and direct driveshaft

RAT = capacity factor of torque converter

SR = speed ratio = RPM_1'/RPM_1

SR = $f_{SR}(RAT)$ = characteristic of a given converter.

The above system of equations is solved about variable RPM'1. The solution is organized as a process of minimization of deviation δ :

$$TORQ'_1 = (A_1/A_2) TORQ_2$$

$$RPM_1' = RPM_2$$

(a) RAT =
$$RPM_1' / \sqrt{TORQ_1'}$$

(b)
$$SR = f_{SR}(RAT)$$

(c)
$$RPM_1 = RPM_1'/SR$$

(d)
$$\delta_i = (A_2/A_1) RPM_1' + ((A_2 - A_1)/A_2) RPM_1 - RPM_2.$$

If δ is less then tolerant deviation D $_0$, the output data are calculated at steps (g) through (j) below. In the opposite case, variable RPM is decremented:

(e)
$$RPM_1' = RPM_1' - \Delta RPM$$

and calculations are repeated starting from step (a) above. The preceeding step of calculations is paralleled by the following interpolation operation.

The last two values of deviation δ (positive and negative) are saved together with corresponding values of variable RPM': $(\delta_R$, RPMR) and $(\delta_L$, RPML). At the time when the deviation δ

changes its sign, the interpolated value of variable RPM' is then calculated from equation:

(f)
$$RPM'_1 = RPML + \frac{RPM_R - RPM_L}{\left|\delta_L\right| + \delta_R} \left|\delta_L\right|$$

and calculation cycle is repeated starting from step (a) above. The goal of the interpolation procedure is to obtain the solution within the limited number of computing steps.

The following final steps render the desired outputs (SR, TR):

(g)
$$SR = RPM_2/RPM_1$$

(h)
$$TR = f_{TR}(RAT)$$
 from converter characteristic

(i)
$$TORQ_1 = TORQ_2 ((A_2-A_1)/A_2)$$

(j)
$$TR = \frac{TORQ_2}{TORQ_1 + TORQ_1^{1}/TR} = A_2/((A_2-A_1) + A_1/TR).$$

5.2 COAST MODE

An algorithm for the coast mode differs from the one presented above in step (e) and the final step which read:

(e)
$$RPM'_1 = RPM'_1 + \Delta RPM$$

(g)
$$SR = RPM_2/RPM_1$$

$$(h-j)$$
 TR = 1.0

5.3 IDLE MODE

In this mode of operation, the values of coefficients for the split torque converter are: SR = 0, TR = 1.

		G G	

5.4 TEST OF ALGORITHMS FOR SPLIT TORQUE CONVERTER

Using numerical data from Table 2 -- which is a sample VEHSIM output of a drive and coast converter table -- and interpolation technique previously specified, the offered algorithms were tested and results are presented below.

(1) Driving Mode

Given: $RPM_2 = 1400 RPM$

 $TORQ_2 = 400 \text{ lb. ft.}$

Parameters of the split torque planetary mechanism:

$$A_1 = 1, A_2 = 2.4.$$

The results of the computing cycles for variable RPM_1^\prime are given in Table 3.

(2) Coast Mode

Initial conditions are same. Results of computations of variable RPM' are in Table 4.

TABLE 2. DRIVE AND COAST CONVERTER DATA (CGC117)

DRIVE CONVERTER
11.75 inch drive torque converter diameter = 11.8 pump inertia = 0.142 FT-LB-Sec**2 turbine inertia = 0.083 FT-LB-Sec**2 constant input torque = 250.00 LB-FT

		Private de la constante de la						
Speed Ratio	0.000	0.100	0.200	0.300	0.400	0.500	0.600	0.700
Torque Ratio	2.008	1.916	1.816	1.712	1.628	1.488	1.364	1.240
Input Speed	1640.0	1670.0	1700.0	1745.0	1810.0	1890.0	1990.0	2120.0
K-Factor	0.000	7.630	15.957	25.28	35.887	48.996	64.659	84.286
Speed Ratio	0.800	0.887	0.923	0.950	0.964	0.975	0.983	0.984
Torque Ratio	1.120	1.000	1.000	1.000	1.000	1.000	1.000	1.000
Input Speed	2300.0	2515.0	2925.0	3475.0	4150.0	4720.	5290.0	6100.0
K-Factor	109.96	141.038	170.763	208.71	252.98	290.93	328.87	379.47

COAST CONVERTER
11.75 Inch Coast Torque Converter

diameter = 11.8

pump inertia = 0.192 FT-LB-Sec**2 turbine inertia = 0.083 FT-LB-Sec**2

Speed Ratio	1.560	1.166	1.103	1.038	1.022	1.019
Torque Ratio	1.000	1.000	1.000	1.000	1.000	1.000
Input Speed	848.0	1324.0	1766.0	2626.0	3502.0	3937.0

TABLE 3. DRIVE MODE

Step #	1	2	3	4	5
RPM	1400	1300	1200	1100	1135.9
RAT	108.5	100.7	93	85.3	88
SR	.8	.76	.74	.7	.714
RPM ₁	1750	1710	1621.6	1571.4	1589
δ	204	139	45	-25.2	0.2

The desired results:

$$SR = \frac{1400}{1589} = \underline{0.89}$$

$$TORQ_1 = 400 \left(\frac{2.4 - 1}{2.4}\right)$$

$$TR = f_{TR}(RAT = 88) = 1.18$$

$$TR_{(Total)} = \frac{400}{400\left(\frac{1.4}{2.4}\right) + 400\left(\frac{1}{2.4}\right)\left(\frac{1}{1.18}\right)} = 1.068$$

×			

TABLE 4. COAST MODE

Step #	1	2	3	4
RPM;	1 400	1500	1600	1548.5
SR	× 1.42	1.24	1.157	1.19
RPM ₁	985.5	1209.7	1382.8	1301
δ	-242	-69.2	73.4	-1.5

The searched result: SR = 1400/1301 = 1.076

6. TRANSMISSION ALGORITHMS IMPLEMENTATION INTO VEHSIM

The presence of the split torque converter at the third gear of the Overdrive transmission necessitates a construction of a special procedure within the existing VEHSIM program. In order to simplify a software effort and evade an introduction of additional microelements into the existing VEHSIM program, the following scheme of reconstruction is offered.

The existing subroutine "CONVTR" is supplemented by "IF" statement and a separate block dedicated to the overdrive transmission subroutine (Figure 4).

The structure of the Overdrive transmission subroutine is displayed in Figure 5.

At the first and second gear, the Overdrive transmission works as a standard torque converter. Accordingly, the existing subroutine CONVTR is utilized without any changes. The gear ratios (Table 1) which take place at the first and second gear are reflected as parameters of a gear box using the existing data sheet. The structure of a procedure "Split Torque" (Figure 5) is illustrated in Figure 6. The crosshatched boxes in Figure 6 are segments of a copy of CONVTR subroutine. Of these, segments "Coast" and "Drive" are used to generate values of variables SR and TR. The programs within the two clear segments in Figure 6 reproduce algorithms for the split torque converter.

A detailed flow chart for the split torque segment of the overdrive transmission subroutine is presented in Figure 7, and a glossary of symbols used in the flow charts is given in Table 5.

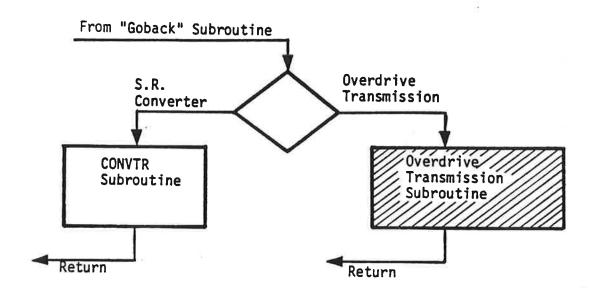


FIGURE 4. FLOW CHART OF THE OVERDRIVE TRANSMISSION SUBROUTINE IMPLEMENTATION INTO VEHSIM

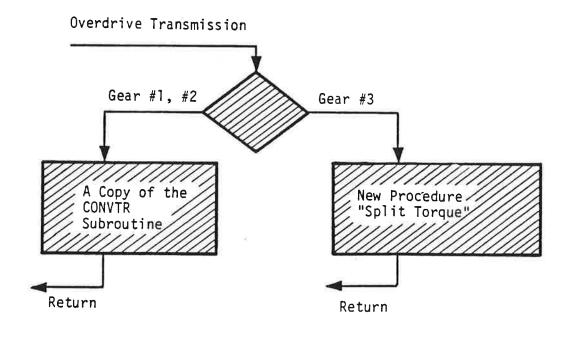


FIGURE 5. STRUCTURE OF NEW SUBROUTINE "OVERDRIVE TRANSMISSION"

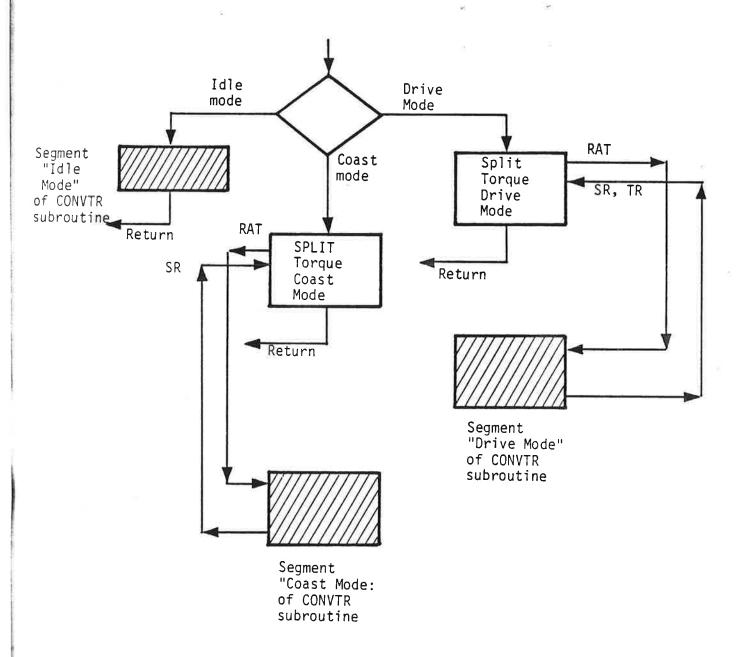


FIGURE 6. FLOW CHART FOR DRIVE, COAST AND IDLE MODES

e e e e e e e e e e e e e e e e e e e		
	SE	

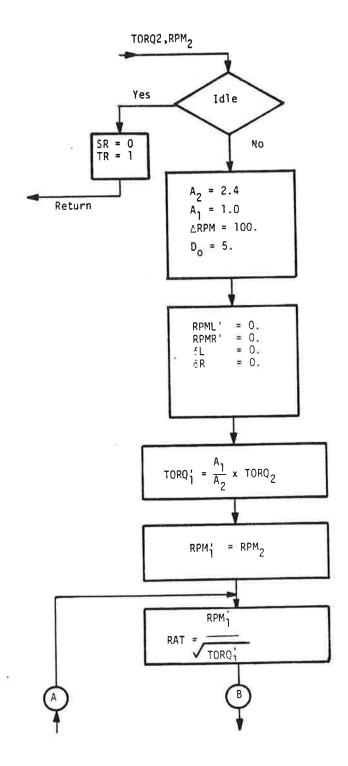


FIGURE 7. DETAILED FLOW CHART OF THE SPLIT TORQUE SEGMENT OF THE OVERDRIVE TRANSMISSION SUBROUTINE

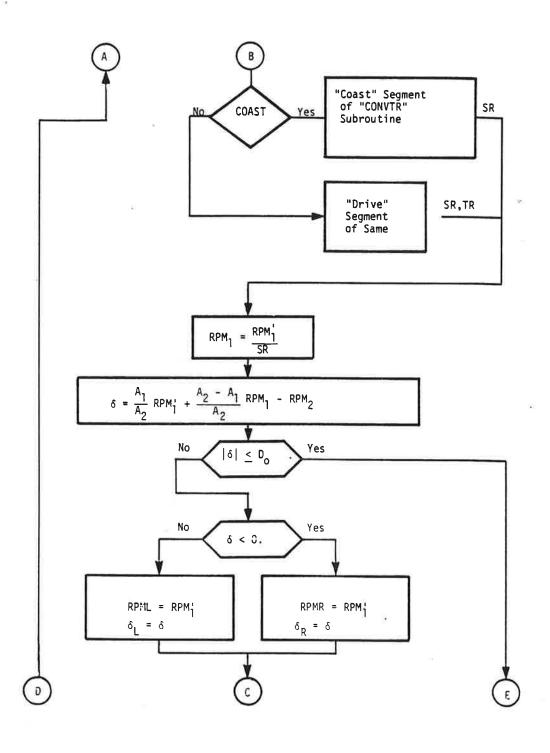
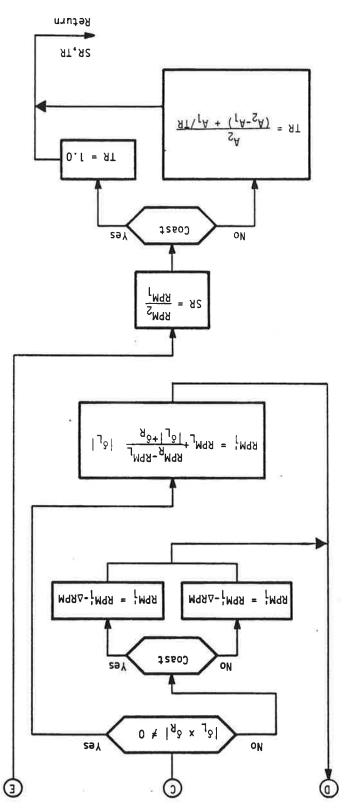



FIGURE 7. DETAILED FLOW CHART OF THE SPLIT TORQUE SEGMENT OF THE OVERDRIVE TRANSMISSION SUBROUTINE (Continued)

FIGURE 7. DETAILED FLOW CHART OF THE SPLIT TORQUE SEGMENT OF THE OVERDRIVE TRANSMISSION SUBROUTINE (Continued)

	£.			

TABLE 5. GLOSSARY OF SYMOBLS USED IN FIGURE 7

 A_1 , A_2 = coefficient proportional to number of teeth of a sun gear and ring gear of a planetary mechanism

Coast = Logic flag identifying the coast mode

 D_{O} = Absolute value of tolerant deviation δ

Idle = same for the idle mode

RAT = capacity factor of the torque converter

 RPM_1 = engine speed

RPM₁ = converter output speed

RPM₂ = split-torque converter output

RPM = the last calculated and saved value of variable RPM which corresponded to the negative value of deviation δ

 RPM_{R} = same for the positive value of δ

SR = speed ratio of the converter

TORQ₁ = torque at the direct driveshaft of the split torque converter

 $TORQ_1'$ = same as the converter output

 $TORQ_2$ = same as the split torque converter output

TR = torque ratio of the converter

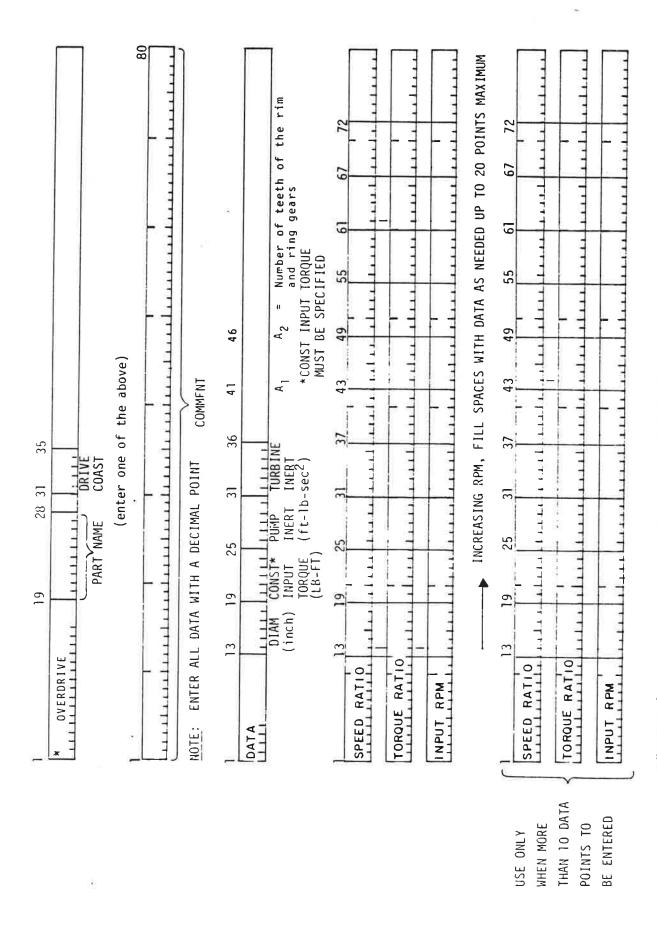
 δ = deviation of the calculated value of RPM' from the given value of RPM'

 δL , δR = the last calculated negative and positive values of deviation δ

 Δ RPM = increment/decrement of searched variable RPM¹

	9	

7. DATA SHEET FOR TRANSMISSION SIMULATION


The data base relating to the Automatic Overdrive Transmission is to be read into the computer using the existing set of data sheets:

- #5. GEAR (torque loss characteristic)
- #6. SPEED RATIO CONVERTER (torque loss characteristic)
- #8. TRANSMISSION
- #12. SHIFT LOGIC.

The coefficients A_1 , A_2 (proportional to teeth number of the sun and ring gear of the planetary mechanism) must be placed as an additional information of the data sheet. For this purpose, the data sheet "S. R. Converter" could be used. The projected positions for coefficients A_1 , A_2 are designated at the existing "S. R. Converter" data sheet turned into "Automatic Overdrive Transmission" (Figure 8).

In addition to that, for this data sheet a special code word must be introduced. This word (OVDRV) must be used within the CONVTR subroutine to direct the flow of information to the Overdrive Transmission segment of the named subroutine (see Vol. II).

Ř			
		w.	

AUTOMATIC OVERDRIVE TRANSMISSION DATA SHEET: . ∞ FIGURE

APPENDIX A

SHIFT LOGIC LINES DEFINED IN DEGREES OF THROTTLE

The Integrated Overdrive Transmission uses throttle degrees as a control signal for its shift logic. The value of this parameter is calculated within the existing version of subroutine ENGINE. Accordingly, the shift lines determined within the Data Sheet - SHIFT LOGIC must be defined in degrees of throttle rotation. The capability to read the named segment of the SHIFT LOGIC Data Sheet expressed in throttle degrees is accomplished by the changes within the respective subroutines of VEHSIM program. These changes are summarized in Table A-1.

		14	

IMPLEMENTATION OF CAPABILITY TO READ SHIFT LOGIC LINES IN THROTTLE DEGREES TABLE A-1.

	Comment	The degree range of shift logic lines must correspond to the throttle degree range of the engine map.	DTHRO - a new word	LTMR - new logic case TMR = throttle positions in degrees from engine map		N - appropriate number for the given statement	In place of the 22nd and 23rd lines
List of Changes Within VEHSIM	New Edition	Vàcuum unit-vacuum THROTILE Throttle (%WOT) DTHRO Throttle (degrees)	Same	X = [Torqe-TMIN/(TWOT-TMIN)] *100 IF (LVAC) X = Vac IF (LTHR) H = THR	<pre>IF (LVAC.OR.LTHR) PCTMR = [(TORQE-TMIN)/(TWOT-TMIN)] *100</pre>	IF(Word.NE.HVACUU, and Word.NE.HTHROT) N002, N001 N001 IF (Word.NE.HDTHRo) go to 300 N002 (configuration of the program)	LVAC = FALSE. LTHR = FALSE IF (Word.EQ.HVACUU) LVAC = True IF (Word.EQ.HDTHRO) LTHR = True
List of	Line	The 5th from the top	The 7th line from the top columns 19-26	In place of two lines from #7 down	Overdrive shift criteria	Shift logic The 20th line from #2780	From the 22nd line down after #2780
5	Subroutine/ Section	Data sheet 12 shift logic	Data sheet 12 shift logic	Subroutine SHIFTS	SHIFTS	INPBAT	INPBAT
	#	- :	2	က	4	S	9

IMPLEMENTATION OF CAPABILITY TO READ SHIFT LOGIC LINES IN THROTTLE DEGREES TABLE A-1. (CONTINUED)

Comment). N'001 for the given statement go to the month of the m	Add to "Data"	Add to "Common" (Eng. map)	Add to "Logical"	Add to "Load Shift Logic"	Add to store shift logic
New Edition	IF (Word 1.NE.HVACUU, AND. Word.NE.HTHROT) N'002, N'001 N'001 (Word 1.NE.HbTHRo) go to 300 N'002 (configuration of the program)	DATA HDTHRO/SHDTMRO/	LTHR	LTHR	LTHR	LTHR
Line	From the 7th line down	"DATA"	Common (Eng. map)	Logical	Load shift logic data	Store Shift
Subroutine/ Section	INPBAT	INPBAT	VEHS I M COMMON	VEHSIM	DSKRD	DSKWR
#	7	∞	6	10	11.	12

	ĸ		

CALLED BY:	GOBACK	
***********		C ENTRY POINTS, DVHUNV
C USED FUN THE OVERDRIVE TRA	E SPLIT TOROUE CUNVERTER IN RESPONSE TO THE RANSHISSION	***
C DICTIONARY OF	F VARIABLES USED IN THIS ROUTINE	
C RPM2 - INPUT	T VARIABLE INTO SPLIT TORUE SEGNENT	
ATSIN-CONTR	ACTION COEFFICIENT OF INCREMENT FOR	
At COEFFI TEET	CIENT PROPORTIONAL TO THE NUMBER OF HOW RING GEAR OF SPLIT TOROUE PLANETARY	
C A2 COEFFICE	CIENT PROPORTIONAL TO THE NUMBER OF	
HECH	HING GEAR OF SPI	
C FROM TOLERAN	ANCE OF DEVIATION OF CALCULATED RPM2	
PLL - THEOR	ETICAL INFINITY, TAKEN FON COMPARISON T DEVIATION OF CALCULATED RPM2 FROM THE	æ
L.	VARIABLE	
INCLUDE .CO	MNS/NOLIST*	
C INITIALIZE VA	VANTABLES	
	(See and 3 of 0 of 5	
DUERPHRICO.O	Commission of the Commission o	
20 0 W X P A		
IF(RPM2,GT.1	.0) GD TD 9	
IF IDLE SET	TO LOWEST SPEED RATIO	
SR#SID(1)		
9 CONTINUE		
TOROLIA (ALVAZ) TOROZ	I) +TOR02	
HPM11mRPM2 110 KATMKPM11/SGRT(TORG11) 1F(COAST) GO TO 140	OPT(TORDIS)	
-	3	
IF (TURUZ, GE. SBEI.O FETURE	0.000ucal) GD TO 0	
R CONTINUE RATEMPA2/SQHT(TORU2) IF(PAT_LT_TORNPK) GO TO	(TORU2) iiPK) G0 T0 20	
12111111111111111111111111111111111111		1.

5		

GU TO 1400 Jantio = 1 IF(RAT, GT, AKD(J)) GO TO 12 Jaj = 1	JPEJ+1 SPE(SKU(J)*SRD(JP))/(AKD(J)*AKD(JP))*(NAT=AKD(JP))+8RD(JP) IF(SH,GT.1,0) &RE1,0 GO TO 140 IF(RAT,LT,AKD(1)) GO TO 30	-1 T.1) GG TG 30 .GT.AKD(J)) GG TG	SHW(SRU(J)=SRD(JP))/(AKD(J)=AKD(JP))*(RAT=AKD(JP))+SRD(JP) THW(THU(J)=THD(JP))/(AKD(J)=AKD(JP))*(RAT=AKD(JP))+TRD(JP) THW(THU(J)=THD(JP))/(AKD(J)=AKD(JP))*(RAT=AKD(JP))+TRD(JP) THW(THU(J)=TRD(JP))/(SRD(JP)=SRD(JP)+AKD(JP) THE (AKD(J)=AKD(JP))/(SRD(J)=SRD(JP))*SRD(JP)+AKD(JP) JO 10	TO 25 COAST MODE. TINUE IPPN.LT.SRC(1) **AKC(1), GO TO 55 RPM2,GT.SRC(NTC) **AKC(NTC), GO TO 60	IF BELOW LOWEST SR GIVEN AS INPUT JP#2 GO TO 75 IF ABOVE HIGHEST SR GIVEN AS INPUT	HENT FOR CUR	DO TO JM2,NTC IF(RPH2,GE,SRC(J-1)*AKC(J-1),AND,RPH2,LE,SRC(J)*AKC(J)) 1 GO TO 73 CONTINUE JMJP-1	COMPUTE SPEED RATIO BY INTERPOLATION SH#(SMC(J)-SRC(JP)/(AKC(J)*SRC(J)-AKC(JP)*SRC(JP)) * (RPM2-AKC(J)*SHC(J))+SRC(J) IF(SH.LT.1.0) SR*1.0 GJ TO 140
110	12	22	20 21	901	000 th 00	u 9 u u	665 70 73	2002

	14	
		8

90 CONTINUE 140 F(SM, GT, SRD(NTD)) SR#SRD[NTD) 150 DL#((A1/A2)**PM; 1+(§A2-A1)/A2)**RPW; 1-RPW; 1			
RETURN CONTINUE RPHIMARPH1/SR DL=((A1/A2)*RPH11+((A2-A1)/A2)*RPH1)-RPH2 DL=((A1/A2)*RPH11+((A2-A1)/A2)*RPH1)-RPH3 IPASS=IPASS+IPASS+1 IF(IPASS*GR**ICE*)*IF**ICE**IF**ICE**IF**ICE**IF**ICE**IF**ICE**IF**ICE**IF**ICE**IF**ICE**IF**ICE**IF**ICE**IF**ICE**IF**ICE**IF**ICE**IF**ICE**IF**ICE**IF**ICE**IF**ICE**IF**ICE**IF**ICE**ICE			
DL=((A)/A2)**PPH1+((A2-A1)/A2)**PPH1)-RPH2 IPASS=IPASS+1 IF(IPASS,GE_100) STOP WITHIN TOLERANCET IF YES,END OF ITERATIVE PROCESS IF(ABS(DL), LE, DVV) GO TO 310 CONTINUE ITERATION ALONG SAME DIRECTION IF(ILL, LT, 2,0) GO TO 210 RPH(RAPM) DLR=DL GO TO 230 RPH(RAPM) DLL=DL IF(ABS(DLR=DLL), NE, 0,0) GO TO 290 IF(CAST) GO TO 270 DHIVE HOLD IF(CAST) GO TO 340 IF(CAST) GO TO 340 IF(CAST) GO TO 340 IF(COAST) G		6 M O'	
IF(TPASS,GE,100) STOP WINTERATIVE PROCESS WITHIN TOLERANCET IF YES,END OF ITERATIVE PROCESS IF(ALS(NL),LE,NV) GO TO 310 CONTINUE ITERATION ALONG SAME DIRECTION IF(Lb,LT,0,0) GO TO 210 RPH(HRPM11 DLADL), WE,0,0) GO TO 290 RPH(HRPM11 DLAPM RPH(HRPM11 DLADL), WE,0,0) GO TO 290 IF(CAST) GO TO 270 IF(CAST) GO TO 270 IF(CAST) GO TO 270 IF(CAST) GO TO 340 IF(CAST) GO TO 340 RPH(HRPM11 + DLAPM GO TO 340 IF(CAST) GO		1 M 1 D:	
F(Abs(DL), LE, DVV) GO TO 310 CONTINUE ITERATION ALONG SAME DIRECTION IF(ID, LT. 0.0) GO TO 210 KPHREIPH11 DLABDL ME, 0.0) GO TO 210 KPHREIPH11 DLABDL ME, 0.0) GO TO 200 RPHLEMPH11 LECOAST GO TO 270 GO TO 10 GO TO		H 1 0:	
CONTINUE ITENATION ALONG GAME DIRECTION IF(10.LT.0.0.0) GO TO 210 RPHREIPH11 DIABLE GO TO 730 RPHLEMPH11 DIABLE DIABLE IF(20AST) GO TO 270 DIAVE HODE RPHILERPH1+DLLRPH GO TO 10 RPHILERPH1+DLLRPH GO TO 10 RPHILERPH1+C((RPHR-RPHL)/(ABS(DL)+DLR))*ABS(DL)) COAST) GO TO 360 TORQIPTORQ2*((A2-A1)/A1) IF (COAST) GO TO 360 TORQIPTORQ2*(A2-A1)/A1) RETHRA COMTINUE COMTINUE COAST MODE THETOWALTORQ1+TORQ11/TR) RETURN COMTINUE COAST WODE THETOWALTORQ2*(A2-A1)/A1) RETURN COMTINUE COAST WODE		ы	
IF(bb,bt,0,0) GO TO 210 RPHRatPM11 DLRBDL GO TO 210 RPHLatPM11 DLRBDL GO TO 270 GO TO 290 RPHLatPM11 BDLRBDL RE,0,0) GO TO 270 GO TO 10 GO		111 10 10 111 111 111 111 111 111 111 1	4
RPHRanchwii DLRaDL GD 10 230 RPHLaHPHii DLLADL IF(CAST) GO TO 270 BRHIJAPHII-DLLHPM GO TO 130 RPHIJAPHII-DLLRPM GO TO 130 RPHI			
DURBUL DURBUL BULBUL INCASIOLNEDLL)*NE,0,0) GO TO 290 INCASIOLNEDLL)*NE,0,0) GO TO 290 INCASIOLNEDLLPPH GO TO 110 RPH IBRPH 1-DLLRPH GO TO 110 RPH IBRPH 1-DLLRPH GO TO 110 RPH IBRPH 1-C ((RPMR-RPML)/(ABS(DL)) + ABS(DL)) GO TO 110 RPH IBRPH 1-C ((RPMR-RPML)/(ABS(DL)) + ABS(DL)) GO TO 110 GO TO 110 SREPRAZIRENT CONTINUE CONTINUE CONTINUE COAST WODE FRIGHT 10DE FRIGHT 10DE FRIGHT 10DE RETURN END			# (A) (A) #
GG TO 230 RPHLEMPN11 DLL=DL IF(ABS(DLR=DLL)*NE.0,0) GG TO 290 IF(COAST) GG TO 270 DNIVE MUDE RPH;I=RPH11=DLLKPH GG TO 130 RPH;I=RPH1+DLLRPH GG TO 110 RPH;I=RPH++((RPHR=RPHL)/(ABS(DL)+DLR)) GG TO 110 SP=MR2/RPH; GG TO 360 TO 110 SP=MR2/RPH; IF (COAST) GG TO 360 TO FOLST GG TO 360 FETURN COMTINUE COAST MODE THE 1.0 RETURN END			
RPHL#HPM11 DLL=DL IF(ABSCDLR=DLD,*NE,0,0) GO TO 290 IF(COAST) GO TO 270 DNIVE HODE RPH11=RPH11=DLLKPH GO TO 110 RPH11=RPH1+DLRPH GO TO 110 RPH11=RPML+((RPHR=RPML)/(ABS(DL)+DLR)) RPH11=RPML+((RPHR=RPML)/(ABS(DL)+DLR)) RPH11=RPML+((RPHR=RPML)/(ABS(DL)+DLR)) RPH11=RPML+((RPHR=RPML)/(ABS(DL)+DLR)) RPH11=RPML+(RPHR=RPML)/(ABS(DL)+DLR) TO 110 SR=RPHY/RPHI COAST GO TO 160 TORQI=TORQZ*(A2-A1)/A1) IF (COAST GO TO 160 TORQI=TORQZ*(TORQI+TORQI1/TR) RPTURM COMTINUE COAST MODE THEL,0 RETURM END			
DLLMDL IF(ABS(DLM+DLL), "WE, 0,0) GO TO 290 IF(COAST) GO TO 270 DNIVE HODE RPH Imaph I = DLLMPH GO TO 110 RPH Imaph I = DLLMPH GO TO 110 RPH Imaph I = COAST) GO TO 160 IF (COAST) GO TO 160 IF (COAST			
IF(ABS(DLR-DLL), NE. 0,0) GO TO 290 IF(ABS(DLR-DLL), NE. 0,0) GO TO 290 IF(COAST) GO TO 270 AP4; aRPH; DLLKPH GO 1:0 1:0			
IF(COAST) GO TO 270 DHIVE HODE RP411=RP411=DLLRPM GO 10 13 RP411=RPH11+DLLRPH GO 10 13 RP411=RPH1+C((RPMR-RPHL)/(ABS(DL)+DLR))+ABS(DL)) GO TO 110 SPARPA2/RPH1 IF(COAST) GO TO 360 IF(TOMUS/(TORQ)+TORQ11/TR) RETURN COMTINUE COAST HODE THEI, 0 RETURN END			
DALYE HODE RP4 arph1 = arph1 = DLLKPH GO 10 130 RP4 arph1 = bllkPH GO 10 130 RP4 arph2 bllkPH GO 70 110 SPA RP4 srPhL+ ((RP4R-RPML)/(ABS(DL)+DLR)) + ABS(DL)) GO 70 110 SPA RP4 rand rand rand rand rand rand rand rand			
RP411aRP411-DLLKPM GG 10 110 RP411aRP411+DLLRP4 GG 70 110 RP411aRPML+((RPMR-RPML)/(ABS(DL)+DLR)) GG 70 110 SFALPAZ/RP41 IF (COAST) GG 70 180 ITORGISTORQ2*(A2-A1)/A1) IFSTURN COMTINUE COMTINUE COMTINUE COAST WODE THE TORGISTORGISTORGISTORGISTORGISTORGE THE TORGISTORGISTORGISTORGE THE TORGISTORGE THE 1.0 RETURN END		301	
GO TO 130 RPH11mRPM1+DLLRPH GO TO 130 RPH11mRPNL+(((RPMR-RPML)/(ABS(DL)+DLR))*ABS(DL)) GO TO 130 GO TO 130 SR#RPM2/RPH1 IF (COAST) GO TO 360 TOROI*TOROI*TOROI*TOROI!/TR) RETURN CONTINUE CONTINUE COAST WODE TREI,0 RETURN END	1 1	PH11-DLLKPM	
RPM118RPM11+DLLRPH GO TO 110 GO TO 110 SR=KPW2/RPH1 IF COAST) GO TO 360 TORQ2*((A2-A1)/A1) IN TORQ1*TORQ2*((A2-A1)/A1) IN TORQ1*TORQ1*TORQ1+TORQ11/TR) RETURN CONTINUE COAST WODE TRE1.0 RETURN END	1 1	6	
PPM11sFPML+((RPMR-RPML)/(ABS(DL)+DLR))*ABS(DL)) GO TO 10 GO TO 10 SR#RPM2/RPM1 IF (COAST) GO TO 360 TORDISTORG2*((A2-A1)/A1) TRETURN CONTINUE CONTINUE CAST HODE TRETURN FETURN CONTINUE CAST HODE TRETURN END	4 4 9	M11+DLLRPM	
FF 11 SEPTEMBLATIC ((FFTK-NFTL)) (ABS (DL) + DLH)) **ABS (DL)) GO TO 110 SFR PH2/RPH1 IF (COAST) GO TO 160 TORDISTORO2*((A2-A1)/A1) IF TORO1*TORO2*((A2-A1)/A1) THETORO2*(TORO1+TORO11/TR) RETURN CONTINUE COAST HODE THE 1.0 RETURN END			
SR#KPM2/RPM1 IF (COAST) GO TO 360 IF (COAST) GO TO 360 IF (COAST) GO TO 360 IH TOWQZ/(TORQ1+TORQ11/TR) RETURN CUNTINUE COAST HODE THELO RETURN END		JAC+((FFJK-KPML)/(ABS(UL)+ULK))+ABB(UL)	
IF (COAST) GO TO 360 TORGITOWQZ*((A2-A1)/A1) THETOWQZ/(TORGI+TORGI1/TR) RETURN CUNTINUE COAST WDDE THELO RETURN END		Ивриј	
TORGISTORGZ*((A2-A1)/A1) THSTORGZ*(TORGISTR) RETURNE CONTINUE CAST WODE TREI.0 RETURN END		0 10	
TH#TOHO2/(TORQ1+TORO11/TR) RETHRA CONTINUE COAST HODE TR#1.0 RETURN END		JRQ2+((A2-A1)/A1)	
RETURN CONTINUE COAST HODE TR=1.0 RETURN END		2/(TORQ1+TORQ11/TR)	
CONTINUE COAST HODE TREI.0 RETURN END	1	* * * * * * * * * * * * * * * * * * * *	
CAAST WODE TR=1.0 RETURN END	1		
	TRE1.0	300	
	RETURN		
F 2002 5402 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			70.00
	END		2020

165 Copies

	ϵ		
To the second se			

U.S. Department of Transportation

Research and Special Programs Administration

Kendall Square Cambridge, Massachusetts 02142

> Postage and Fees Paid Research and Special Programs Administration DOT 513

Official Business
Penalty for Private Use \$300

457 457

東岩 m. structulated over